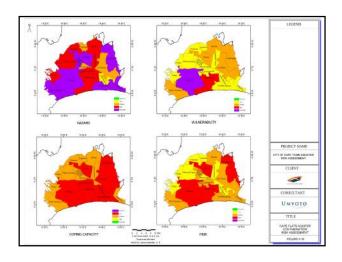
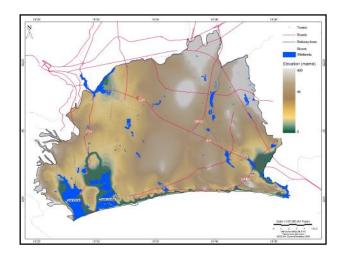
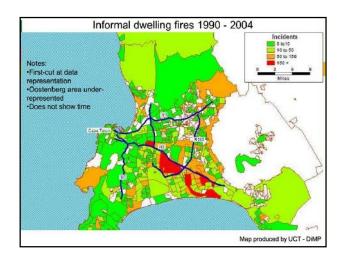
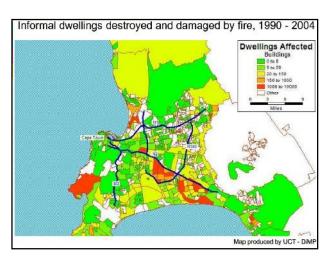
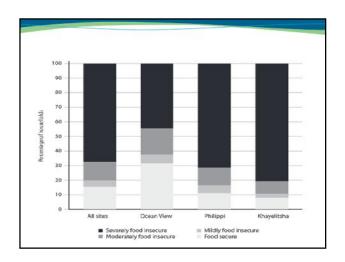

Constituent mg/L	Tredoux (1984)	Wessels & Greeff (1980)	NGDB (DWAF 2006)		
EC (mS/m)	73 – 138	33 - 2900	38.3 - 659		
рН	0.9 - 7.5	6.9 - 8.8	5.7 - 8.6		
Chloride	70 – 255	30 - 9246	28.1 - 2100		
Sulphate	25 - 43	4.8 – 1750	5.5 - 350		
Alkalinity	261 - 2/5	112 - 902	8.5 - 43/		
Sodium	43 - 142	20 - 7000	20 3 - 1048		
Potassium	1.5 - 3.3	0.5 - 300	0.66 - 53.8		
Calcium	95 - 98	11 – 1370	3.2 - 260		
Magnesium	0.4 - 26	6 – 1000	5.4 - 119		


Constituent	Waste Disposal Sites		Sewage treatment works	
mg/l	Unpolluted	Polluted	Unpolluted	Polluted
EC (mS/m)	121 – 138	193 – 970	73	220
рН	6.9 - 7.5	0.4 - 6.8	1.2	6.7
Chloride	210 - 255	187 -1150	70	132
Sulphate	27 – 43	35 – 70	25	32
Alkalinity	266 275	891 3460	281	879
Nitrate	< 0.1	0.2 - 0.6	< 0.1	24
Sodium	123 - 142	148 - 775	43	116
Potassium	15-33	21 – 444	17	49
Calclum	95 – 98	53 – 226	97	159
Magnesium	17.7 20	41 99	8.1	22
Ammonium	0.5	23 - 658	0.5	115


Considerations & Constraints • Land Use - Informal and Conflicting Use - Contamination threat • Existing Usage in high yield aquifer zones • Saline Intrusion • Storm Water Management • Groundwater Dependent Ecosystems


Flood risk	Area description Areas along the Kuils River including Barney Molokwane comer, Sebata Dalindyebo square, and Silvertown	
Flood prone areas		
Recorded flooding in 2001	Silvertown and Sebata Dalindyebo square	
Informal areas adjacent to storm water ponds	Nonqubela, Victoria Mxenge, Washington square, Mandalay, and Site C	
Informal settlements adjacent to flood plain areas	Soloman Mahlangu, Trevor Vilakazi, and Silvertown	




Opportunities • Bulk Water Supply - Cost benefit question - High Yield Zones in use - Impact on existing users - Saline intrusion - Better use can be made of aquifer potential - Rather turn constraints and considerations into opportunities

SENSITIVE URBAN GROUNDWATER MANAGEMENT

- Pump All Year
 - Local Scale Sanitation
 - Ecosystem Catchment Management
 - Onshore Nearshore Offshore Water Exchange
- Pump in Summer
 - Flood Mitigation
 - Fire Control
 - Food Security & Community Greening

Approaches

- Cooperative Governance (City & Province)
 - Water Conservation & Demand Management
 - Catchment Stormwater and River Management
 - Disaster Risk Management
 - Environmental Resource Management
 - Spatial Planning & Urban Design
 - DEDT
 - DEA DP (BRIP)

Way Forward

- Proposal Call for Conceptual and Reconnaissance Level Studies
- Proposal Call for Design Procure Construct with Community Facilitation and Training
- Community Operated Well fields with Expert Input as required

